Learning Loss for Knowledge Distillation with Conditional Adversarial Networks

نویسندگان

  • Zheng Xu
  • Yen-Chang Hsu
  • Jiawei Huang
چکیده

There is an increasing interest on accelerating neural networks for real-time applications. We study the studentteacher strategy, in which a small and fast student network is trained with the auxiliary information provided by a large and accurate teacher network. We use conditional adversarial networks to learn the loss function to transfer knowledge from teacher to student. The proposed method is particularly effective for relatively small student networks. Moreover, experimental results show the effect of network size when the modern networks are used as student. We empirically study trade-off between inference time and classification accuracy, and provide suggestions on choosing a proper student.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Classifier Learning with Generative Adversarial Networks

In this paper, we address the incremental classifier learning problem, which suffers from catastrophic forgetting. The main reason for catastrophic forgetting is that the past data are not available during learning. Typical approaches keep some exemplars for the past classes and use distillation regularization to retain the classification capability on the past classes and balance the past and ...

متن کامل

Learning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks

We propose discriminative adversarial networks (DAN) for semi-supervised learning and loss function learning. Our DAN approach builds upon generative adversarial networks (GANs) and conditional GANs but includes the key differentiator of using two discriminators instead of a generator and a discriminator. DAN can be seen as a framework to learn loss functions for predictors that also implements...

متن کامل

CatGAN: Coupled Adversarial Transfer for Domain Generation

This paper introduces a Coupled adversarial transfer GAN (CatGAN), an efficient solution to domain alignment. The basic principles of CatGAN focus on the domain generation strategy for adaptation which is motivated by the generative adversarial net (GAN) and the adversarial discriminative domain adaptation (ADDA). CatGAN is structured by shallow multilayer perceptrons (MLPs) for adversarial dom...

متن کامل

Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

We introduce a simple semi-supervised learning approach for images based on in-painting using an adversarial loss. Images with random patches removed are presented to a generator whose task is to fill in the hole, based on the surrounding pixels. The in-painted images are then presented to a discriminator network that judges if they are real (unaltered training images) or not. This task acts as...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.00513  شماره 

صفحات  -

تاریخ انتشار 2017